
Great Company Great People 1

Back-tracing in MIPS-based Linux Systems

Kim, Jong-Sung (jsungkim@lge.com)

LG Electronics

Great Company Great People 2

Agenda

� Backgrounds

� MIPS stack-frame structure

� Back-tracing in MIPS systems

� Back-tracing from the signal context

� Sample applications

� Summary

� References

� Appendix: Crash Report System applied to LGE products

Great Company Great People 3

Backgrounds

Great Company Great People 4

The MIPS Core

� Brief history

� In 1981, a team led by John L. Hennessy at Stanford University started working on what

would become the 1st MIPS processor

� In 1984, Hennessy left Stanford to form MIPS Computer Systems

� In 1992, SGI bought the company to guarantee the design would not be lost

� The company became known as MIPS Technologies

� Key concepts

� Deep instruction pipelines

� One cycle for one instruction (eliminating interlocks)

� Core design licensing

� Broadcom (SiByte), IDT, LSI Logic, NEC, Philips, Toshiba, …

� Very popular in developing CE products (BDP, DTV, PDA, STB, …)

� Known as rolling back stack-frames is not possible

Great Company Great People 5

Back-tracing

� In many cases, it’s very hard and takes long time to reproduce an error

� Just-in-time debug information is very useful

� Process/thread ID

� Register dumps

� Variable dumps

� Programming language-level call-stack

� Et cetera

� Back-tracing: extracting the function call-stack

Great Company Great People 6

Related Works

� __builtin_return_address function/macro inside GCC

� Written by Richard Henderson (rth@redhat.com)

� Several just-in-time debug features inside Glibc

� Including:

● backtrace(3), backtrace_symbols(3), …

● catchsegv(1), libSegFault.so

� Written by Ulrich Drepper (drepper@redhat.com)

� However, they’re not available for MIPS systems

Great Company Great People 7

MIPS Stack-frame Structure

Great Company Great People 8

MIPS Stack-frame Structure from ABI

� Conceptual structure of a MIPS stack-frame

Great Company Great People 9

Real-world MIPS Stack-frame Structure

� Sample C function

� Nested function

� Two automatic variables

� Stack-frame structure

� Reserved region for arguments

� Old stack-frame pointer

� Return address

� Hmm.. what’s the problem?

� Variable offsets from the top of stack

� This figure is not always true

#include <dlfcn.h>

#include <stdio.h>

…

static int shared_local(void)

{

void *dl_obj;
int (*dl_fcn)(void);

printf(“%s\n”, __FUNCTION__);

dl_obj = dlopen(“libdynamic.so”, RTLD_NOW);

dl_fcn = (int (*)(void))dlsym(dl_obj, “dynamic_global”);

return dl_fcn();
}

Great Company Great People 10

Back-tracing in MIPS Systems

Great Company Great People 11

Binary Code Scanning

� The stack-frame is not enough for back-tracing

� Previous stack-frame pointer

● Offset from $sp is variable

● Sometimes not saved

� Return address

● Offset from $sp is variable

● Sometimes not saved (but, don’t care in this section)

� So, binary code scanning is required to acquire:

� Current stack-frame size

� Offset of stack-stored return address

Great Company Great People 12

Function Prologue & Epilogue

� Prologue for a nested function

� Context register setup

� Current stack-frame allocation

� Return address saving

� Epilogue for a nested function

� Return address loading

� Current stack-frame de-allocation

� Function return

Great Company Great People 13

Back-tracing Procedure

� Initialization

� Registers latching (ra ���� $ra, sp ���� $sp)

� Code scanning for current stack-frame size

� Adjust sp to previous stack-frame (sp ���� sp + stack_size)

� Repeat until maximum depth reached or ra is zero

� Save ra in return address buffer

� Code scanning for current stack-frame size and offset of saved return address

� Load return address to ra (ra ���� sp[ra_offset])

� Adjust sp to previous stack-frame (sp ���� sp + stack_size)

� Return the count of the return addresses found

Great Company Great People 14

Instruction Formats

ADDIU

001001
rs rt immediate

6 5 5 16

31 26 25 21 20 16 15 0

Format: ADDIU rt, rs, immediate

Description: GPR[rt] GPR[rs] + immediate

LW

100011
base rt offset

6 5 5 16

31 26 25 21 20 16 15 0

Format: LW rt, offset(base)

Description: GPR[rt] memory[GPR[base] + offset]

SW

101011
base rt offset

6 5 5 16

31 26 25 21 20 16 15 0

Format: SW rt, offset(base)

Description: memory[GPR[base] + offset] GPR[rt]

Great Company Great People 15

backtrace_mips32 Function

� Working source code of backtrace_mips32

Great Company Great People 16

Back-tracing from The Signal Context

Great Company Great People 17

Signal Handler Context

� backtrace_mips32 can’t handle stack-frames from signal contexts

� In the signal handler context:

� $ra points to the code block (by kernel) in the stack

� backtrace_mips32 can’t handle this non-function code block

� To back-trace from signal contexts:

� Skip the kernel-inserted code/data block by referencing the signal context structure

(ucontext_t) given to the signal handler

� Handle the possible leaf function at the top of the call-stack

● No saved return address

● No stack-frame

Great Company Great People 18

Back-tracing from The Signal Context

� Initialization

� Find $pc, $ra, and $sp from the signal context structure

(pc ���� mcontext_t::pc, ra ���� mcontext_t::gregs[31], sp ���� mcontext_t::gregs[29])

� Save pc in return address buffer

� Code scanning from pc to find stack-frame size and stored ra offset

� If return address was stored, load it to ra (ra ���� sp[ra_offset])

� Adjust sp to previous stack-frame (sp ���� sp + stack_size)

� Repeat until maximum depth reached or ra is zero

� Save ra in return address buffer

� Code scanning for current stack-frame size and offset of saved return address

� Load return address to ra (ra ���� sp[ra_offset])

� Adjust sp to previous stack-frame (sp ���� sp + stack_size)

� Return the count of found return addresses

Great Company Great People 19

sigbacktrace_mips32 Function

� Working source code of sigbacktrace_mips32

Great Company Great People 20

More Considerations for The Safer Back-tracing

� Leaf functions

� Leaf functions usually don’t save registers

� Leaf functions can run with zero-size stack-frame

� Assembly-coded or hard-optimized functions

� These functions may not save registers

� These functions may run with zero-size stack-frame

� These functions may not have normal function prologue and/or epilogue

� If a function without normal function prologue is located at the first place of a

loaded object, sigbacktrace will dereference illegal addresses

� Therefore, back-tracing needs hands of the loaded object/symbol table

Great Company Great People 21

Sample Applications

Great Company Great People 22

Build & Running Environment

� Processor: Broadcom BCM7440P 266MHz

� Linux kernel: 2.6.12

� C library: uClibc 0.9.28

� GCC version: 3.4.6

� CFLAGS: -O –W –Wall –export-dynamic –fPIC –fno-optimize-sibling-calls –g

Great Company Great People 23

Sample Application #1

� Simple application to test backtrace_mips32

� Using static/shared/dynamic-loaded libraries

� All functions print its name

� dynamic_local dumps the call-stack using backtrace_mips32

Great Company Great People 24

Outputs from The Application

Great Company Great People 25

Outputs from The Application (Stripped Binaries)

Great Company Great People 26

Outputs from The Application (Optimized Binaries by –O2 or –O3)

Great Company Great People 27

Sample Application #2

� Same with sample application #1, except:

� dynamic_local tries null-pointer assignment

� sigbacktrace_mips32 is called from the (SIGSEGV handling) signal context

Great Company Great People 28

Outputs from The Application

Great Company Great People 29

Accompanied to objdump Utility

� If we have binaries compiled with “-g” option…

Great Company Great People 30

Wrap-up

Great Company Great People 31

Summary

� Back-tracing in the MIPS needs some code inspections

� Back-tracing from the signal context needs some more handlings

� Working backtrace/sigbacktrace functions are presented

� Now I’m working on making these functions as an open-source library or inside MIPS-

ports of C libraries

Great Company Great People 32

References

� Documents

� MIPS32® Architecture For Programmers – Volume I: Introduction to the MIPS32®

Architecture

� MIPS32® Architecture For Programmers – Volume II: The MIPS32® Instruction Set

� System V Application Binary Interface – MIPS® RISC Processor Supplement, 3rd Edition

� Using the GNU Compiler Collection

� Internet resources

� MIPS Architecture – History

Great Company Great People 33

Appendix: Crash Report System Applied to LGE Products

Great Company Great People 34

Crash Report System

� Purpose

� Guarantee not to lose in-time information of system crashes

� Easy extraction of in-time information

● /proc filesystem entry

● Extractable to a USB drive

� With Crash Report System…

� All console output is stored on a circular log buffer

� On watchdog expiration, the captured log is stored to an NVRAM

� Developers can extract the stored log later

� The stored log includes the just-in-time debug information

Great Company Great People 35

Block Diagram

C
O
P

M
e
s
g

R
e
fr
e
s
h

E
x
p
ir
a
ti
o
n

S
to
re
 l
o
g

T
ra
n
s
m
it

Great Company Great People 36

In-time Debug Information

� In-time debug information by the sample application

