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The MIPS Core

� Brief history

� In 1981, a team led by John L. Hennessy at Stanford University started working on what 

would become the 1st MIPS processor

� In 1984, Hennessy left Stanford to form MIPS Computer Systems

� In 1992, SGI bought the company to guarantee the design would not be lost

� The company became known as MIPS Technologies

� Key concepts

� Deep instruction pipelines

� One cycle for one instruction (eliminating interlocks)

� Core design licensing

� Broadcom (SiByte), IDT, LSI Logic, NEC, Philips, Toshiba, …

� Very popular in developing CE products (BDP, DTV, PDA, STB, …)

� Known as rolling back stack-frames is not possible
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Back-tracing

� In many cases, it’s very hard and takes long time to reproduce an error

� Just-in-time debug information is very useful

� Process/thread ID

� Register dumps

� Variable dumps

� Programming language-level call-stack

� Et cetera

� Back-tracing: extracting the function call-stack
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Related Works

� __builtin_return_address function/macro inside GCC

� Written by Richard Henderson (rth@redhat.com)

� Several just-in-time debug features inside Glibc

� Including:

● backtrace(3), backtrace_symbols(3), …

● catchsegv(1), libSegFault.so

� Written by Ulrich Drepper (drepper@redhat.com)

� However, they’re not available for MIPS systems
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MIPS Stack-frame Structure
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MIPS Stack-frame Structure from ABI

� Conceptual structure of a MIPS stack-frame
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Real-world MIPS Stack-frame Structure

� Sample C function

� Nested function

� Two automatic variables

� Stack-frame structure

� Reserved region for arguments

� Old stack-frame pointer

� Return address

� Hmm.. what’s the problem?

� Variable offsets from the top of stack

� This figure is not always true

#include <dlfcn.h>

#include <stdio.h>

…

static int shared_local(void)

{

void *dl_obj;
int (*dl_fcn)(void);

printf(“%s\n”, __FUNCTION__);

dl_obj = dlopen(“libdynamic.so”, RTLD_NOW);

dl_fcn = (int (*)(void))dlsym(dl_obj, “dynamic_global”);

return dl_fcn();
}
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Back-tracing in MIPS Systems



Great Company Great People 11

Binary Code Scanning

� The stack-frame is not enough for back-tracing

� Previous stack-frame pointer

● Offset from $sp is variable

● Sometimes not saved

� Return address

● Offset from $sp is variable

● Sometimes not saved (but, don’t care in this section)

� So, binary code scanning is required to acquire:

� Current stack-frame size

� Offset of stack-stored return address



Great Company Great People 12

Function Prologue & Epilogue

� Prologue for a nested function

� Context register setup

� Current stack-frame allocation

� Return address saving

� Epilogue for a nested function

� Return address loading

� Current stack-frame de-allocation

� Function return
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Back-tracing Procedure

� Initialization

� Registers latching (ra ���� $ra, sp ���� $sp)

� Code scanning for current stack-frame size

� Adjust sp to previous stack-frame (sp ���� sp + stack_size)

� Repeat until maximum depth reached or ra is zero

� Save ra in return address buffer

� Code scanning for current stack-frame size and offset of saved return address

� Load return address to ra (ra ���� sp[ra_offset])

� Adjust sp to previous stack-frame (sp ���� sp + stack_size)

� Return the count of the return addresses found



Great Company Great People 14

Instruction Formats

ADDIU

001001
rs rt immediate

6 5 5 16

31 26 25 21 20 16 15 0

Format: ADDIU rt, rs, immediate

Description: GPR[rt]  GPR[rs] + immediate

LW

100011
base rt offset

6 5 5 16

31 26 25 21 20 16 15 0

Format: LW rt, offset(base)

Description: GPR[rt]  memory[GPR[base] + offset]

SW

101011
base rt offset

6 5 5 16

31 26 25 21 20 16 15 0

Format: SW rt, offset(base)

Description: memory[GPR[base] + offset]  GPR[rt]
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backtrace_mips32 Function

� Working source code of backtrace_mips32
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Back-tracing from The Signal Context
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Signal Handler Context

� backtrace_mips32 can’t handle stack-frames from signal contexts

� In the signal handler context:

� $ra points to the code block (by kernel) in the stack

� backtrace_mips32 can’t handle this non-function code block

� To back-trace from signal contexts:

� Skip the kernel-inserted code/data block by referencing the signal context structure 

(ucontext_t) given to the signal handler

� Handle the possible leaf function at the top of the call-stack

● No saved return address

● No stack-frame
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Back-tracing from The Signal Context

� Initialization

� Find $pc, $ra, and $sp from the signal context structure

(pc ���� mcontext_t::pc, ra ���� mcontext_t::gregs[31], sp ���� mcontext_t::gregs[29])

� Save pc in return address buffer

� Code scanning from pc to find stack-frame size and stored ra offset

� If return address was stored, load it to ra (ra ���� sp[ra_offset])

� Adjust sp to previous stack-frame (sp ���� sp + stack_size)

� Repeat until maximum depth reached or ra is zero

� Save ra in return address buffer

� Code scanning for current stack-frame size and offset of saved return address

� Load return address to ra (ra ���� sp[ra_offset])

� Adjust sp to previous stack-frame (sp ���� sp + stack_size)

� Return the count of found return addresses
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sigbacktrace_mips32 Function

� Working source code of sigbacktrace_mips32



Great Company Great People 20

More Considerations for The Safer Back-tracing

� Leaf functions

� Leaf functions usually don’t save registers

� Leaf functions can run with zero-size stack-frame

� Assembly-coded or hard-optimized functions

� These functions may not save registers

� These functions may run with zero-size stack-frame

� These functions may not have normal function prologue and/or epilogue

� If a function without normal function prologue is located at the first place of a 

loaded object, sigbacktrace will dereference illegal addresses

� Therefore, back-tracing needs hands of the loaded object/symbol table
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Sample Applications
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Build & Running Environment

� Processor: Broadcom BCM7440P 266MHz

� Linux kernel: 2.6.12

� C library: uClibc 0.9.28

� GCC version: 3.4.6

� CFLAGS: -O –W –Wall –export-dynamic –fPIC –fno-optimize-sibling-calls –g



Great Company Great People 23

Sample Application #1

� Simple application to test backtrace_mips32

� Using static/shared/dynamic-loaded libraries

� All functions print its name

� dynamic_local dumps the call-stack using backtrace_mips32
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Outputs from The Application
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Outputs from The Application (Stripped Binaries)
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Outputs from The Application (Optimized Binaries by –O2 or –O3)
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Sample Application #2

� Same with sample application #1, except:

� dynamic_local tries null-pointer assignment

� sigbacktrace_mips32 is called from the (SIGSEGV handling) signal context
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Outputs from The Application
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Accompanied to objdump Utility

� If we have binaries compiled with “-g” option…
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Wrap-up
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Summary

� Back-tracing in the MIPS needs some code inspections

� Back-tracing from the signal context needs some more handlings

� Working backtrace/sigbacktrace functions are presented

� Now I’m working on making these functions as an open-source library or inside MIPS-

ports of C libraries
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Appendix: Crash Report System Applied to LGE Products
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Crash Report System

� Purpose

� Guarantee not to lose in-time information of system crashes

� Easy extraction of in-time information

● /proc filesystem entry

● Extractable to a USB drive

� With Crash Report System…

� All console output is stored on a circular log buffer

� On watchdog expiration, the captured log is stored to an NVRAM

� Developers can extract the stored log later

� The stored log includes the just-in-time debug information
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Block Diagram
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In-time Debug Information

� In-time debug information by the sample application


