Embedded Alley

Solutions for Intelligent Devices

OpenEmbedded for
Product Development

Matthew Locke
Embedded Linux Conference

April 2008

s—"‘,
Agenda

Background
Introduction to OE

Example product description
OE setup

Create configurations
Define tasks

Root file system

Application development
Deployment images

vV VvV YV YV Vv VYV VYV V V VY

Summary

Embedded Alley

Background / History

Started in the OpenZarus project to be able to easily build
applications for the Zaurus PDAs

Build system was redesigned and rewritten to be more

generic breaking out the metadata and build tool into two
separate projects

The build tool, bitbake, is based on concepts in Gentoo/
portage

Adopted by many open source projects that provide

distributions for handhelds.org, Linksys routers, motorola
phones, mythTV hardware and many more

Latest project to use OpenEmbedded is OpenMoko a
complete and open mobile phone software stack.

Embedded Alley

e v’
@ Introduction to OpenEmbedded (OE)

A self contained cross build system for embedded devices

» Collection of recipes (metadata) that describe how to build:

< Thousands of packages including bootloaders, libraries,
and applications

< For ~60 target machines including the a780, N770 and
x86

< Over 40 package/machine configurations (distributions)

» Does not include source code. Fetches source using

instructions in metadata.

Take any number of components, build, create images-
Components can be any source type, SVN, tarball

Output is individual packages and filesystem images (jffs2,
ext3, etc).

Embedded Alley

:"“,
@ OE behavior - build from scratch

» Builds self contained build environment from source
> Builds latest version of all components unless specificied

> Downloads source code from location specified in recipe file
(typically from project server on internet)

» Most open source packages built from tarball+patches

Embedded Alley

OE Metadata and BitBake

OE is powered by BitBake, which parses the OE metadata to build
the system.

src - parses recipes/confs

- Creates a database of how
to fetch, configure, build,

Fetch install and stage each
;:i?ensf l ipks package.
parse build — - Determines package

bitbake dependencies and builds in
correct order, parallel where

/
parse generdte__ o[possible
recipes filesystem |
images - Uses the IPK packaging

format.

Embedded Alley

=
é Digital Photo Frame (DPF)

> Digital Photo Frame (DPF)
< Typical current embedded Linux application

< Illustrates use of a varied set of FOSS components
< Requirements are clear and concise

< Many people are familiar with DPF device functionality

DPF platform

» Hardware assumptions
< ARM SoC
> DSP
»PCM audio playback
» LCD controller w/ 16-bit color support
» MMC/SD controller
> NAND controller
<+ 800x600 LCD
< Small number of navigation buttons
< MMC/SD slot

< NAND flash

<+ Speakers Embedded Alley

OE Setup

»Decide on OE metadata version (snapshot or latest)
>Install bitbake

»Setup a pristine OE directory
»Keep changes in an overlay
»Download directory

> Internal mirror

»Changes necessary for commercial product
development versus open source project development

Embedded Alley

OE setup - Overlays

Bitbake parses all conf and recipes files found in the BBPATH
environment variable

Setup an overlay directory that will hold:
< specific conf files
< internal package metadata

< any overloads on pristine metadata for classes, bb files, conf
files

BBPATH should include the following directories:
< openembedded/ - pristine OE metadata
< <overlay>/ - custom metadata
Overlay directory should look like
< conf/ - custom and overloaded config files
< packages/ - internal and overloaded package bb files

Embedded Alley

OE Configuration - Distro

» Configuration files define how the build environment is setup,
Package versions, information, global inheritance, target boards,
inal image configuration.

» Four types of configuration files

< Distro - highest level configuration which defines:
» Toolchain and package versions

» Package configuration - xserver can be built in several configurations.
Distro defines which configuration is built.

> Sets Distro information variables

» High level settings such as use udev for device nodes and final image
format.

Embedded Alley

OE Configuration - Distro

Make the most use of our build system
PARALLEL _MAKE = "-j 6”
DL _DIR = "${OEDIR}/sources"

BBFILES := "${OEDIR}/openembedded/packages/*/*.bb ${OEDIR}/ea-oe/
packages/*/*.bb"

IMAGE_FSTYPES = "jffs2 squashfs tar.bz2”

Use EABI ready toolchain
PREFERRED VERSION_gcc-cross ="4,12"

PREFERRED_VERSION_glibc = "2.5"
PREFERRED_VERSION_uclibc = "0.9.29"
PREFERRED_PROVIDER_ virtual/libc = "glibc"

Embedded Alley

OE Configuration - Machine

» Machine config files — defines board specific versions and
features

< Architecture

< Compiler options and other architecture tunables
< Kernel version and package provider

< Board specific i/o that require drivers and lib

Embedded Alley

OE Configuration - Machine

TARGET_ARCH = "arm"
PACKAGE_EXTRA_ARCHS = "armv4t”

require conf/machine/include/tune-arm920t.inc

With this kernel version, we can use a newer udev
PREFERRED_VERSION_udev = "115"

PREFERRED PROVIDER_virtual/kernel = “linux-dpfboard”
PREFERRED VERSION_linux--dpfboard = "2.6.23.14”

DEVEL FEATURES = "alsa host-usb gadget-usb mtd wifi"

Embedded Alley

DPF software stack

‘ DPF Ul |

OPF App - DPF Other -
manager DPF Sideshow clock/calender

dbus

OpenGL-ES Media Player I AL

DirectFB libjpeg GStreamer udev

User Space | / - i
Kernel -
Kernel/Drivers
Hardware

2

E el ST RS 2 S

d Alley

OE recipe (Overview)

+ Bitbake recipe files (.bb)

» Contain the necessary environment variables, cmds and steps
need to build a package

»Do_fetch, Do_stage(), do_configure(), do_compile(),
do_install(), etc.

< Four types of bb files

> Classes - contains common steps for a class of packages.

» For example, all kernel builds have make, make install, make modules.

> Packages - inherits classes and adds or overrides package
specific settings and steps.

> Defines version and fetcher used to retrieve source

> Tasks - defines the collection of packages to be built

»Images - creates filesystem images out of tasks

Embedded Alley

OE Tasks

> Divide packages into logical groups

< enables developers to work on building blocks and easier
to manage

< Separate production and development
> Typical task definitions —

< Base - the basic user space applications necessary to

boot to a prompt. Used for initial debug of system.
Glibc, busybox, initscripts, sshd

< Core — core open source and/or custom applications
necessary for the apps (middleware)

< Apps - Product applications

< UI — User Interface specific components. Themes, fonts,

menu. Embedded Alley

OE Tasks - Base

RDEPENDS = "|

n

${@base_contains("DEVEL_FEATURES", "alsa", "${ALSA_PKGS}",
A}

base-files base-passwd busybox-devel

kernel kernel-modules |

initscripts sysvinit udev |

${@base_contains("DEVEL_FEATURES", "mtd", "mtd-utils", " d)} |

${@base_contains("DEVEL_FEATURES", "wifi", "wireless-tools", ",
a)} |

dropbear |

Embedded Alley

—
g
é OF Tasks - Core

RDEPENDS = "|
directfb |

hal |
dbus |
gstreamer |

vincent |

libjpeg |

Embedded Alley

r""'*
>

RDEPENDS = "|
dpf-ui |
dpf-themes |
dpf-menu |

Embedded Alley

=2
OE — Images

YV VvV YV V VY

The image file controls what goes into the root file system
The image types are defined in the distro config file

< Flash file system for burning to flash

< Tarball for nfsroot, ramdisk or other development/debug
uses

Separate production and development image

Root file system is created from packages

Root file system class controls root file system creation
Recipes have hooks for extra scripts

Classes can be overridden

Embedded Alley

Setup OE for Commercial environment

Cache copies of open source components as tarballs on a local server
< OE will wget from a URL

Lockdown open source component versions in a Bill of Materials conf file that
is used by the distro conf file

< PREFERRED_VERSION_<pkg name>=<version>
Create internal component metadata to
« fetch from source control (svn, git, cvs, perforce)
< Setup variables to control building from tag, branch or head
< Compile, install, stage and package
Speed up build
< Parallel make and multiple bitbake threads controlled by variables
< Create and distribute prebuilt build environment (SDK)

Reuse ipk’s across machines of the same architecture

Embedded Alley

e i
@ Application Development

» Open source applications now building and in a root
filesystem

» What about developing the DPF custom applications?
> App developer model

< Quickly rebuild source with local changes

< Rebuild source from source control

< Unit test in a development environment

< Integrate with rest of the system

Embedded Alley

-
E Application Development — Two options

> Use OE directly during application development
< Create bb recipe files for application

< Keep SCM updated with changes

< Build using bitbake <package name>

< Integrate by adding package into appropriate task file
» Export SDK from OE

< Setup OE to export toolchain and libraries to an OE
independent environment

< Build applications from local or SCM sources

< Integrate into OE when ready

Embedded Alley

Application Development — BB File

DESCRIPTION = "The DPF Media Player"
SECTION = "dpf/applications”

DEPENDS += "alsa-lib dbus-glib id3lib"
PV = "0.0.1+svnr${SRCREV}"

PR = "r1”

SRC _URI := "${DPF_MIRROR}/src/${DPF_RELEASE}/${SUBDIR} module=$
{PN},;proto=http"

S = "${WORKDIR}/${PN}"

FILES ${PN} += "${datadir}/icons"

Embedded Alley

Deployment — Build output

» Build output directories

cache

conf — build specific configuration files

deploy — image and packages

staging — intermediate install for libraries and headers
work - build directory

cross — host tools for target

rootfs - expanded root filesystem

stamps

Embedded Alley

Deployment — images and packages

> Deploy directory
images/ - kernel, bootloader and rootfs images

ipk/ - all components in a binary package format (ipk)

» Packages can be used to manage software updates or run time
configuration changes

Embedded Alley

;",
é Test and Ship your DPF

Embedded Alley

OE Summary

< Very powerful metadata system

< Layered design allows easy customizations and additions

< Supports commercial software development use cases nicely
< Many, many packages already supported

< Can build anything from a complete mobile phone stack to a
DVR to a wireless access point stack

» Maemo, Angstrom, OpenMoko, MythTV, unSlung
< Metadata learning curve is high
< Fairly large open source community using it and maintaining it

< Finding a version of metadata that “just works” can be a
challenge

Embedded Alley

Resources

> http://www.openembedded.org

> http://bitbake.berlios.de/manual/ - manual for the bitbake
tool

> http://wiki.openmoko.org - great place to get familiar with how
to build a complete software stack with OE

Embedded Alley

Embedded Alley

Solutions for Intelligent Devices

Contact for more
information

Matthew Locke
mlocke@embeddedalley.com

