
Solutions for Intelligent Devices

Matthew Locke

Embedded Linux Conference

April 2008

OpenEmbedded for
Product Development

EA Solutions

Agenda

  Background

  Introduction to OE

  Example product description

  OE setup

  Create configurations

  Define tasks

  Root file system

  Application development

  Deployment images

  Summary

EA Solutions

Background / History

•  Started in the OpenZarus project to be able to easily build
applications for the Zaurus PDAs

•  Build system was redesigned and rewritten to be more
generic breaking out the metadata and build tool into two
separate projects

•  The build tool, bitbake, is based on concepts in Gentoo/
portage

•  Adopted by many open source projects that provide
distributions for handhelds.org, Linksys routers, motorola
phones, mythTV hardware and many more

•  Latest project to use OpenEmbedded is OpenMoko a
complete and open mobile phone software stack.

EA Solutions

Introduction to OpenEmbedded (OE)

•  A self contained cross build system for embedded devices

  Collection of recipes (metadata) that describe how to build:

 Thousands of packages including bootloaders, libraries,
and applications

 For ~60 target machines including the a780, N770 and
x86

 Over 40 package/machine configurations (distributions)

  Does not include source code. Fetches source using
instructions in metadata.

•  Take any number of components, build, create images-
Components can be any source type, SVN, tarball

•  Output is individual packages and filesystem images (jffs2,
ext3, etc).

EA Solutions

OE behavior - build from scratch

  Builds self contained build environment from source

  Builds latest version of all components unless specificied

  Downloads source code from location specified in recipe file
(typically from project server on internet)

  Most open source packages built from tarball+patches

EA Solutions

OE Metadata and BitBake

OE is powered by BitBake, which parses the OE metadata to build
the system.

•  parses recipes/confs

•  Creates a database of how
to fetch, configure, build,
install and stage each
package.

•  Determines package
dependencies and builds in
correct order, parallel where
possible

•  Uses the IPK packaging
format.

EA Solutions

Digital Photo Frame (DPF)

  Digital Photo Frame (DPF)

 Typical current embedded Linux application

 Illustrates use of a varied set of FOSS components

 Requirements are clear and concise

 Many people are familiar with DPF device functionality

EA Solutions

DPF platform

  Hardware assumptions

 ARM SoC

 DSP

 PCM audio playback

 LCD controller w/ 16-bit color support

 MMC/SD controller

 NAND controller

 800x600 LCD

 Small number of navigation buttons

 MMC/SD slot

 NAND flash

 Speakers

EA Solutions

OE Setup

 Decide on OE metadata version (snapshot or latest)

 Install bitbake

 Setup a pristine OE directory

 Keep changes in an overlay

 Download directory

 Internal mirror

 Changes necessary for commercial product

development versus open source project development

EA Solutions

OE setup - Overlays

  Bitbake parses all conf and recipes files found in the BBPATH
environment variable

  Setup an overlay directory that will hold:

 specific conf files

  internal package metadata

 any overloads on pristine metadata for classes, bb files, conf
files

  BBPATH should include the following directories:

 openembedded/ - pristine OE metadata

 <overlay>/ - custom metadata

  Overlay directory should look like

 conf/ - custom and overloaded config files

 packages/ - internal and overloaded package bb files

EA Solutions

OE Configuration - Distro

  Configuration files define how the build environment is setup,
package versions, information, global inheritance, target boards,
final image configuration.

  Four types of configuration files

 Distro - highest level configuration which defines:

 Toolchain and package versions

 Package configuration - xserver can be built in several configurations.
Distro defines which configuration is built.

 Sets Distro information variables

 High level settings such as use udev for device nodes and final image
format.

EA Solutions

OE Configuration - Distro

Make the most use of our build system

PARALLEL_MAKE = "-j 6”

DL_DIR = "${OEDIR}/sources"

BBFILES := "${OEDIR}/openembedded/packages/*/*.bb ${OEDIR}/ea-oe/
packages/*/*.bb"

IMAGE_FSTYPES = "jffs2 squashfs tar.bz2”

 # Use EABI ready toolchain

PREFERRED_VERSION_gcc-cross = "4.1.2”

PREFERRED_VERSION_glibc = "2.5"

PREFERRED_VERSION_uclibc = "0.9.29"

PREFERRED_PROVIDER_virtual/libc = "glibc"

EA Solutions

OE Configuration - Machine

  Machine config files – defines board specific versions and
features
 Architecture

 Compiler options and other architecture tunables

 Kernel version and package provider

 Board specific i/o that require drivers and lib

EA Solutions

OE Configuration - Machine

TARGET_ARCH = "arm"

PACKAGE_EXTRA_ARCHS = "armv4t”

require conf/machine/include/tune-arm920t.inc

With this kernel version, we can use a newer udev

PREFERRED_VERSION_udev = "115"

PREFERRED_PROVIDER_virtual/kernel = ”linux-dpfboard"

PREFERRED_VERSION_linux--dpfboard = "2.6.23.14”

DEVEL_FEATURES = "alsa host-usb gadget-usb mtd wifi"

EA Solutions

DPF software stack

EA Solutions

OE recipe (Overview)

 Bitbake recipe files (.bb)

 Contain the necessary environment variables, cmds and steps
need to build a package

 Do_fetch, Do_stage(), do_configure(), do_compile(),
do_install(), etc.

 Four types of bb files

 Classes - contains common steps for a class of packages.
  For example, all kernel builds have make, make install, make modules.

 Packages - inherits classes and adds or overrides package
specific settings and steps.

  Defines version and fetcher used to retrieve source

 Tasks - defines the collection of packages to be built

 Images - creates filesystem images out of tasks

EA Solutions

OE Tasks

  Divide packages into logical groups

 enables developers to work on building blocks and easier
to manage

 Separate production and development

  Typical task definitions –

 Base - the basic user space applications necessary to
boot to a prompt. Used for initial debug of system.
Glibc, busybox, initscripts, sshd

 Core – core open source and/or custom applications
necessary for the apps (middleware)

 Apps - Product applications

 UI – User Interface specific components. Themes, fonts,
menu.

EA Solutions

OE Tasks - Base

RDEPENDS = "\
 ${@base_contains("DEVEL_FEATURES", "alsa", "${ALSA_PKGS}",

"",d)} \

 base-files base-passwd busybox-devel

 kernel kernel-modules \

 initscripts sysvinit udev \

 ${@base_contains("DEVEL_FEATURES", "mtd", "mtd-utils", "", d)} \

 ${@base_contains("DEVEL_FEATURES", "wifi", "wireless-tools", "",
d)} \

 dropbear \

"

EA Solutions

OE Tasks - Core

RDEPENDS = "\

 directfb \

 hal \

 dbus \

 gstreamer \

 vincent \

 libjpeg \

"

EA Solutions

OE Tasks - UI

RDEPENDS = "\

 dpf-ui \

 dpf-themes \

 dpf-menu \

"

EA Solutions

OE – Images

  The image file controls what goes into the root file system

  The image types are defined in the distro config file

 Flash file system for burning to flash

 Tarball for nfsroot, ramdisk or other development/debug
uses

  Separate production and development image

  Root file system is created from packages

  Root file system class controls root file system creation

  Recipes have hooks for extra scripts

  Classes can be overridden

EA Solutions

Setup OE for Commercial environment

  Cache copies of open source components as tarballs on a local server

 OE will wget from a URL

  Lockdown open source component versions in a Bill of Materials conf file that
is used by the distro conf file

  PREFERRED_VERSION_<pkg name>=<version>

  Create internal component metadata to

  fetch from source control (svn, git, cvs, perforce)

  Setup variables to control building from tag, branch or head

  Compile, install, stage and package

  Speed up build

  Parallel make and multiple bitbake threads controlled by variables

  Create and distribute prebuilt build environment (SDK)

  Reuse ipk’s across machines of the same architecture

EA Solutions

Application Development

  Open source applications now building and in a root
filesystem

  What about developing the DPF custom applications?

  App developer model

 Quickly rebuild source with local changes

 Rebuild source from source control

 Unit test in a development environment

 Integrate with rest of the system

EA Solutions

Application Development – Two options

  Use OE directly during application development

 Create bb recipe files for application

 Keep SCM updated with changes

 Build using bitbake <package name>

 Integrate by adding package into appropriate task file

  Export SDK from OE

 Setup OE to export toolchain and libraries to an OE
independent environment

 Build applications from local or SCM sources

 Integrate into OE when ready

EA Solutions

Application Development – BB File

DESCRIPTION = "The DPF Media Player"

SECTION = ”dpf/applications"

DEPENDS += "alsa-lib dbus-glib id3lib"

PV = "0.0.1+svnr${SRCREV}"

PR = "r1”

SRC_URI := "${DPF_MIRROR}/src/${DPF_RELEASE}/${SUBDIR};module=$
{PN};proto=http"

S = "${WORKDIR}/${PN}"

FILES_${PN} += "${datadir}/icons"

EA Solutions

Deployment – Build output

  Build output directories

 cache

 conf – build specific configuration files

 deploy – image and packages

 staging – intermediate install for libraries and headers

 work - build directory

 cross – host tools for target

 rootfs - expanded root filesystem

 stamps

EA Solutions

Deployment – images and packages

  Deploy directory

 images/ - kernel, bootloader and rootfs images

ipk/ - all components in a binary package format (ipk)
  Packages can be used to manage software updates or run time

configuration changes

EA Solutions

Test and Ship your DPF

EA Solutions

OE Summary

 Very powerful metadata system

 Layered design allows easy customizations and additions

 Supports commercial software development use cases nicely

 Many, many packages already supported

 Can build anything from a complete mobile phone stack to a
DVR to a wireless access point stack
 Maemo, Angstrom, OpenMoko, MythTV, unSlung

 Metadata learning curve is high

 Fairly large open source community using it and maintaining it

 Finding a version of metadata that “just works” can be a
challenge

EA Solutions

Resources

  http://www.openembedded.org

  http://bitbake.berlios.de/manual/ - manual for the bitbake

tool

  http://wiki.openmoko.org - great place to get familiar with how

to build a complete software stack with OE

Solutions for Intelligent Devices

Matthew Locke

mlocke@embeddedalley.com

Contact for more
information

