
Leveraging Free and Open Source
Software in a Production

Environment

Matt Porter

EA Solutions, Inc.

Introduction

➲  The value in leveraging Free and Open
Source Software (FOSS) is obvious
●  Save time
●  Saves money and we get to market faster

➲  If I use the GNU toolchain, Linux kernel, and
a standard rootfs…what else is there?
●  Much..much..more
●  Toughest part of leveraging FOSS is knowing

that useful code already exists for your project
●  There is no substitute for good Google research

skills

Case Study

➲  The best way to see how to maximize
FOSS usage is to use an example

➲  We will use a real product case study
●  Product steps
●  Define application requirements
●  Break down requirements to software components
●  Identify software components fully or partially available

as FOSS
●  Integrate/extend FOSS components with value add

software to meet application requirements

Digital Photo Frame (DPF)

➲  Digital Photo Frame (DPF)
●  Typical current embedded Linux application
●  Illustrates use of a varied set of FOSS

components
●  Requirements are clear and concise
●  Many people are familiar with DPF device

functionality

DPF platform

➲  Hardware assumptions
●  ARM SoC
●  DSP
●  PCM audio playback
●  LCD controller w/ 16-bit color support
●  MMC/SD controller
●  NAND controller

●  800x600 LCD
●  Small number of navigation buttons
●  MMC/SD slot
●  NAND flash
●  Speakers

DPF Requirements

➲  DPF shall support display to the LCD
➲  DPF shall detect SD card insertion
●  Notify DPF application of SD card presence
●  DPF application will catalog photo files on SD

card
➲  DPF shall provide a modern 3D GUI and

transitions
●  Menu navigation via buttons
●  Configuration for slideshows and types of

transitions to use via menus

DPF Requirements

➲  DPF shall support audio playback from
speakers
●  MP3 audio playback
●  Playlist handling
●  ID3 tag display

➲  DPF shall support JPEG resize and rotation
●  Shall handle arbitrary size JPEGs up to

1600x1200
●  Dithering support for 16-bit color display
●  Display on 800x600 LCD

DPF software components

➲  Based on the previous requirements we
have the following component breakdown
●  Firmware
●  OS kernel
●  I/O drivers
●  Base userspace framework/applications
●  Media event handler
●  Jpeg library (run on ARM or DSP)
●  MP3 and supporting audio libraries
●  OpenGL ES library for 3D interface
●  Main DPF application

DPF FOSS components

➲  First, we cover the obvious FOSS
components
●  Firmware
●  U-Boot, and others

●  OS kernel
●  Linux, of course!

●  I/O drivers
●  Leverage SD/MMC, FB, Input, ALSA subsystems

●  Base userspace support/applications
●  Busybox, OE build system

Media event handler

➲  Udev
●  Receives events from kernel
●  SD card insertion/removal

●  Creates device nodes
●  Uses standard udev rule set
●  Optionally use prepopulate option for performance
●  Optionally use custom rules for local unique naming

●  Sends the SD card event over a socket to the
HAL daemon
●  Custom rule

Media event handler

➲  HAL
●  Hardware Abstraction Layer
●  Daemon to handle hardware interaction
●  Maintains a database of known device objects
●  Received uevents are processed according to device

information files.
●  Add-Ons provide specific functionality for devices
●  Storage Add-On polls for SD changes
●  SD insert/removal messages are sent to the DPF

application
●  D-Bus is the API by which messages are

delivered to the DPF application

Media event handler

➲  D-Bus
●  IPC framework
●  Implements a system-wide message bus

●  Applications can communicate with each other
over the message bus.
●  Communication is asynchronous

●  HAL<->DPF communication takes place over D-
Bus

●  DPF application subscribes to HAL SD
●  SD change events are delivered asynchronously from

the HAL daemon to the DPF application on the
message bus

●  Mount/umount can also be controlled via HAL

Media event handler

HAL

Kernel

D-Bus

udev

DPF Application

JPEG library

➲  Libjpeg
●  Handles JPEG decode

➲  Jpegtran
●  Resize and rotation support

➲  FIM (Fbi IMproved)
●  Dithering support

MP3 and supporting libraries

➲  Libmad
●  Run on ARM
●  Decode MP3 audio for playback

➲  Libid3
●  Handle id3 tags for display

➲  Libm3u
●  Handle media playlists

DSP acceleration

➲  What can be leveraged to accelerate JPEG
and MP3 processing on the DSP?

➲  Need a DSP bridge
●  Openomap.org
●  In some cases, requirements might dictate a

different approach
●  Use libelf to process ELF DSP binaries
●  Allows for pre-runtime patching of symbols
●  Allows for cross calls from DSP to ARM

➲  Leverage general purpose libraries
●  Libjpeg, jpegtran, FIM, and libmad can be ported

to run portions on a DSP

OpenGL ES library

➲  Vincent
●  OpenGL ES 1.1 compliant implementation
●  Compatible with GLU|ES GLUT|ES supporting

libraries
●  Nokia branch ported to Linux/X11, easily

modified for FB operation
●  Can be extended for hardware accelerated color

and floating/fixed pointed conversions
●  Can be extended for GPU acceleration

OpenGL ES library

➲  A complete GUI can be implemented in low-
level OpenGL ES
●  Shaded/textured widgets
●  Font rendering to textures using the freetype

library
●  Enables 3D “desktop look” for interface

➲  3D photo transitions are possible
●  Photos are loaded to textures
●  Transitions managed as polygon animation and

camera view management

OpenGL ES library
➲  Higher level libraries can be leveraged
●  Clutter
●  OpenGL ES backend due to “COGL” abstraction
●  Provides high level interface building tools

●  Actors (Widgets)
●  Stages (Windows)
●  Eases creation of more complex interfaces over raw OpenGL

ES

DPF application

➲  The main DPF application integrates all of
the FOSS components
●  Manages media events
●  Uses the JPEG library to decode and render

photos
●  Handles Linux input events and drives OpenGL

ES based GUI
●  Manages user-selected configuration
●  Displays photo slideshow using selected

transitions

Conclusions

➲  Good research is the key to maximizing
FOSS use

➲  Many components will require extensions
and/or optimization

➲  Smart use of FOSS where possible will
save time, money, and speed product to
market

Q&A

➲  Questions?

