
Building Blocks for
Embedded Power

Management

Kevin Hilman
khilman@mvista.com

The mission

• Brand new embedded platform
• Fresh baseport of linux
• Your job, add power management

• Where to begin?

• Focus: Linux kernel

Overview

• No one-size fits all
• PM as building blocks

– Strong base: HW features + kernel support
– Suspend and Resume
– managing idle
– DVFS
– application frameworks

• With each added block
– improved power management
– increasing level of effort, complexity

Baby steps: Getting started

• Static tweaking
– disable unused features, drivers
– timeouts
– screen blanking
– scale back clocks, voltage

Buidling a Strong Base

• Know your hardware

• HW features
– clock hierarchy
– voltage/current regulators
– voltage domains, clock domains, power domains
– platform-specific PM hardware

• Kernel internals
– clock framework
– NEW: voltage/current regulator framework (today @ 1:30)

Clock framework

• model HW clock tree
• track dependencies
• maintain usage counts
• disable when unused
• propagate changes

• drivers must use it !!

Suspend and Resume

• Hardware features
– suspend state
– retention: memory, registers
– configurable wake-up sources

• Kernel features
– Suspend/resume infrastructure

• driver notifications
• platform hooks: prepare, entry, finish

• Side Benefits
– Fast “boot”

Managing idle time

• Customize idle loop
• minimize power when idle
• nothing to do? take a nap

• Kernel features
– Tickless idle (a.k.a dynamic tick)
– CPUidle

Different kinds of sleep

• Sleep states, idle states
– wakeup latency
– increase power savings

• How deep can I sleep?
• How long can I sleep?

– use dynamic tick...

Waking up... just to press snooze

• Dynamic tick: tickless idle
– No more periodic tick when idle
– Only wake for next “event”
– Sleep-when-idle can be smarter

• Tools: PowerTOP
– who is preventing sleep
– /proc/timer_stats

CPUidle: when to be idle

• Platform-specific “driver”:
– defines processor idle states by

• power consumption
• wakeup latency

– hooks for entering idle states

• Platform independent “governor”
– transition decisions

• in-kernel as of 2.6.24 (x86, ACPI only)

DVFS

• Dynamic Voltage and Frequency Scaling (DVFS)
• Analyze available “operating points”

– unique set of frequencies, voltages

• Kernel features
– clock framework
– CPUfreq
– policies, governors
– notification framework

CPUfreq: managing operating points

• Framework for defining, and managing operating points
• standardized interface to applications
• platform-specific “driver”
• platform-independent “governors”
• notification framework
• existing set of open-source utilities

Available operating points

• Platform specific code
– defines hardware operating points
– registers them with CPUfreq
– provides hook for setting operating point

• CPUfreq policy: which hardware OPs are “available”
– define available set of hardware OPs
– dynamic

Governors: when to change

• When to change OP, and to which one?
• free to pick from available OPs

– performance: always pick highest OP
– powersave: always pick lowest OP
– on-demand: based on CPU utilization

• e.g. if average CPU utilization >= 80%,
increase OP

– userspace: any user application
• sysfs
• cpufrequtils

Power Management QoS

• Applications know constraints, requirements
– latency, throughput, ...

• Pass them to PM subsystem
• PM can be smarter by using constraints

• Examples:
– wake-up latency constraints may constrain sleep depth
– WiFi: transmitter power can be defined by

latency/bandwith requirements
– network: packets/interrupts could be buffered to reduce

power at the expense of latency

Application Frameworks

• Open Hardware Manager (OHM)
– addresses embedded
– small is beautiful
– http://ohm.freedesktop.org/

• Intel PPM (Power Policy Manager)
– Mobile & Internet Linux Project (moblin.org)
– http://www.lesswatts.org/

http://ohm.freedesktop.org/
http://www.lesswatts.org/

The End

