Development of Embedded SELinux

Yuichi Nakamura, Hitachi Software Engineering Co., Ltd. ynakam@hitachisoft.jp

Copyright © 2008 Hitachi Software Engineering Co., Ltd.

Contents

- 1. What is SELinux?
- 2. Difficulties in Embedded SELinux
- 3. Development of Embedded SELinux
- 4. Application to various devices
- 5. Related works

1. What is SELinux?

3

Vulnerabilities do exist in embedded devices

Often reported: In a mailing list, 30 vulnerabilities are reported a year.

Security is needed for embedded Linux

- Linux based embedded devices are increasing
 TV, DVD recorder, Cell phone, Home gateway, STB
- Connected to the Internet
- Exposed to attacks
- Once exploited:
 - System is destroyed, used as spring board.
 - Device-makers have to recall to fix vulnerabilities.
- Security technology suitable for embedded devices is needed.

Difficulties in security technologies

- Update and Virus scan are common in PCs.
- Update
 - PC: OS vendors take care of all updates
 - Embedded devices
 - Device-makers have to prepare update
 - Heavy task
 - Watch all bugfix
 - Backport patch
 - Provide update software
 - Update will be delayed, or not prepared...
- Virus scan
 - Heavy (Pattern file: 30Mbyte in PC)
- Security technology effective even with no update is required.
- -> SELinux

What is SELinux?

- Security-Enhanced Linux
 - Developed by NSA(http://www.nsa.gov/selinux)
 - Implemented in kernel
 - Merged to 2.6
- Access Control Feature
 - Least privilege (Type Enforcement)
 - Mandatory Access Control(MAC)
 - No one (including root) can avoid
- SELinux can confine behavior of attackers
 - Very difficult to do harm
 - Effective before update
- Widely used for PCs
 - Enabled on Redhat, Fedora by default

TE (Type Enforcement): The access control model

9

- Label based access control
- *Domain* label is assigned to processes
- *Type* label is assigned to resources
- Domain is not allowed nothing by default
- Allow necessary access permissions

Security policy

Domain is allowed nothing by default

- Need to allow necessary accesses
- Configuration for access control rules
- Allow domains to access types

2. Issues in Embedded SELinux

12

#1. Extended attribute(xattr)

#2. Difficulties in security policy

#3. Performance

- Xattr
 - Data structure in file system used to stores labels and other attributes
- In SELinux, filesystem must support xattr!
- Xattr support in filesystem
 - Ext3, ext2 : OK
 - Jffs2 : OK
 - Merged to 2.6.18 by KaiGai
 - LogFS, yaffs: Not yet
- We have to use jffs2 for flash ROM

Issue #2 :Difficulty in security policy(1)

- 3 Steps to configure policy for embedded devices
 - 1) Obtain sample policy (called refpolicy)
 - 2) Tuning: remove unnecessary rules
 - 3) Add necessary rules
- For PC servers, refpolicy is good
 - refpolicy is well-written for PC distros.
- Difficult to write small, precise policy for embedded devices
 - Have to remove too many rules
 - Dependencies in policy
 - Tons of macros

Difficulty in policy: Remove many lines

- Refpolicy is intended for PC usage
 - Included configuration for Fedora, Debian, SUSE
 - Large
 - File size: more than 2M, memory consumption more than 5M
 - To use for embedded need tuning
 - remove unnecessary rules
- Example: To configure simple Apache server
 - We removed more than 400 rules
 - For each rules,
 - You have to understand what you are removing,...
 - It is only a part
 - Base system is not included

Difficulty in policy: Dependency

- Dependency within policy
 - After removing part of policy, error appears because of dependency.
 - Have to declare label when using label.
 - If only declaration is removed, error appears.
 - Sometimes labels are declared in macro, declaration is hidden..
 - Example:
 - After removing policy related to sendmail, error appears in policy of apache

Difficulty in policy: Tons of macros

- Macros are traditionally used to write policy
- Macros are increasing:
 - More than 1000
 - Difficult to understand
- Also a lot of labels

- Overhead on system call
- Memory usage
- File usage
- Ported SELinux to SH based device and measured
 - Target board
 - Renesas R0P751RLC0011RL (R2DPlus)
 - SH 7751R(SH4 240Mhz)
 - RAM 64 Mbyte
 - SELinux before tuning
 - kernel 2.6.22
 - File system
 - ext3 on CF card
 - jffs2 on FLASH ROM
 - Policy : refpolicy in Fedora 6 without tuning
 - Userland: Userland as of Mar 2007

Overhead on system call(Before tuning)

- lmbench
- The SELinux overhead

Imbench	Overhead (%) (Pentium 4 PC)	Overhead(%) SH7751R, before tuning
read	12.3	130.0
write	14.0	146.6
stat	33.0	96.8
create	101.7	163.4
unlink	45.6	86.4
open/close	25.8	93.0
Pipe	20.6	66.8
Unix domain socket	12.3	31.1
ТСР	87.0	22.0
UDP	63.3	27.7

Overhead is bigger in embedded environment

Copyright $\ensuremath{\textcircled{C}}$ 2008 Hitachi Software Engineering Co., Ltd.

- Security policy, SELinux itself consumes memory
- Memory usage by SELinux: B-A
 - A= SELinux disabled kernel, output of free command
 - B= SELinux enabled, output of free command
 - Policy is taken from Fedora Core 6

- Result: 5365 kbyte
- For embedded, it is big.

	Size in crease (kbyte)
Kernel (zlmage)	73.7
library	482.1
Commands	374.6
Policy	1,356.2
Total	2,286.6

Big for Flash ROM system

3. Development of Embedded SELinux

Our work

- Issues to port SELinux to embedded devices
 - #1. Extended attribute(xattr)
 - #2. Difficulties in security policy
 - #3. Performance

Our work

Resolving difficulty in policy

- Used SELinux Policy Editor instead of refpolicy.
- Refpolicy
 - Removing rules from existing policy file, to write small policy
 - Difficult
- SELinux Policy Editor
 - Write only rules that is necessary.
 - Easy to write small policy.

- Tool to configure SELinux policy
- Main feature: SPDL(Simplified Policy Description Language)
 - Hide labels and dependency internally
- Developed by Hitachi Software
- GPL
 - http://seedit.sourceforge.net/

The SPDL

```
* Example of SPDL: policy for Web server program
{
    domain httpd_t;
    program /usr/sbin/httpd;
...
    allow /etc/httpd/** r,s;
    allow /var/log/httpd/** r,a,s;
    allow /var/www/** r,s;
    allownet -protocol tcp -port 80,443 server;
```

- Hide labels
 - Name based configuration: Can use file name, port number
 - Resolve dependency internally
- Simplified permissions

Benefits of SELinux Policy Editor

- Do not have to use sample policy
 - no macros, dependencies
- Can write custom policy for embedded devices
 - SPDL is easy to understand
- Can write small policy
 - can describe only what you need
 - Policy size :about 60k byte for 10 apps
- http://seedit.sourceforge.net/

- Overhead
- Memory footprint
- File size

Reducing overhead

- Mainly reduced read/write overhead
 - It was big (about 150%)
- Other tuning
 - Hand optimization
 - Removed logics about unused permission
 - such as NIC, IP address

Reducing read/write overhead

- Duplicated permission checks in file read/write
 - In open and read/write system call
- Permission check can be removed at read/write
 - Need check only policy is changed after open
- Made patch, merged in 2.6.24
 - http://lkml.org/lkml/2007/9/13/373

Result of Imbench(After tuning)

Imbench	Overhead before tuning (%)	Overhead after tuning(%)
read	130.0	12.5
write	146.6	14.9
stat	96.8	58.8
create	163.4	146.1
unlink	86.4	69.6
open/close	93.0	61.9
pipe	66.8	30.6
UNIX socket	31.1	6.1
ТСР	22	10.5
UDP	27.7	11.7

- Good in read/write!
- Need work in "create"

Improving memory footprint

- Development of policy by SELinux Policy Editor
 - can write small policy easily
 - Wrote policy for 10 apps
- Removing big buffers in kernel
 - Buffers for 32768 policy rules : 252K byte
 - Modified to allocate dynamically depending of policy size
 - Only 1kbyte is allocated when small policy is loaded
 - Merged to 2.6.24
 - $\ http://marc.info/?t=118767097300001\&r=1\&w=2$

Before tuning (kbyte)	After tuning(kbyte)
5365	465

• Small policy contributed a lot (about 4.6M)

Reducing file size

- (1) Writing small policy by SELinux Policy Editor
- (2) Reducing size of library: small libselinux
 - separate libselinux and libsepol
 - Remove unneccesary functions from libselinux
 - Merged to SELinux community
 - <u>http://marc.info/?l=selinux&m=118064545200576&w=2</u>
 - ^rmake EMBEDDED=y₁ build option
 - 482k -> 66k
- (3) Reducing size of commands
 - a) Integrated commands to BusyBox
 - With Japanese community
 - Merged to BusyBox
 - b) Choose least set of commands
 - load_policy, setfiles, restorecon, ls –Z, ps –Z, setenforce, getenforce, is_selinux_enabled
 - $375k \rightarrow 11k$

	Before tuning (kbyte)	After tuning(kbyte)
Kernel (zImage)	73.7	73.7
Library	482.1	66.3
Command	374.6	10.8
Policy	1,356.2	60.4
Total	2,286.6	211.2

4. Application to various devices

- SH based
 - L-Box (NTT Comware)
 - SH7751R
 - Originally 2.4 based
 - Without modifying userland
 - CAT 760 (Silicon Linux)
 - SH7760 based small board
 - Rootfs on 16Mbyte Flash ROM
- ARM based
 - Zaurus(Angstrom)
 - Android on Zaurus

Porting to Android

- Not yet to Android on QEMU
 - Yaffs2 does not support xattr
- We ported SELinux to Android on Zaurus
 - File system is ext3

SELinux on Android Zaurus

- Two domains can be assigned
 - Android_init_t : Programs run from init
 - Android_java_t: Programs run from "app_process"
- Can not assign domains for separate java apps
 - All run as "android_java_t"
 - They are launched from "app_process"

Example application of SELinux on Android

- Multi-mode phone
- Private mode/Bussiness mode in one phone
- Security policy switches between mode

Remaining issues for Android SELinux

- Assigning domains to each java apps
 - We should be able to do..
 - We want source of "app_process"!!!
- Xattr for yaffs
 - Planning to do

5. Related works

Audit for SH

- What is Audit?
 - Framework to obtain system call logs
- Can obtain logs useful to develop SELinux policy
 - Full path name
- Not mandatory, but useful
- CPU dependent because entry.S has to be modified.
 - Supports x86,Power PC,MIPS
 - SH not supported
- Submitted audit for SH patch , merged to 2.6.25

Contributions from Japanese community

- xattr support for jffs2
 - By KaiGai merged to 2.6.18
- Improvement of latency in security check
 - By KaiGai merged to 2.6.24
 - <u>http://marc.info/?t=119078657600002&r=1&w=2</u>
- BusyBox for SELinux
 - SELinux Applets
 - Assigning domains to BusyBox applet
 - By Shinji: Merged to 1.8.2
 - http://www.busybox.net/lists/busybox/2007-August/028481.html

- Strict policy
- More tuning
 - We can reduce more
 - Example
 - we can remove MLS support, booleans from kernel
- xattr for yaffs, logfs

Summary

- Difficulties in Embedded SELinux
 - Difficulty in policy
 - Performance problem
- Development of Embedded SELinux
 - Policy by SELinux Policy Editor
 - Tuning
- Application to some devices
- SELinux is suitable security technology for embedded !
 - Effective without update
 - Architecture independent
 - Lightweight

Thanks

- People in seBusyBox project
 - KaiGai
 - General advices, hosted project site, ml
- SELinux community
 - Stephen Smalley
 - Advices/ideas about implementation of tuning SELinux
- BusyBox community
 - Denis Vlasenko
 - Advices about BusyBox
- Renesas solutions
 - Yusuke Goda : flash ROM boot support for evaluation board

Patches & sources

- See http://elinux.org/SELinux
- SELinux Policy Editor
 - <u>http://seedit.sourceforge.net/</u>
- Reducing read/write overhead
 - Merged to 2.6.24
 - http://lkml.org/lkml/2007/9/13/373
- Removing big fixed size buffer
 - Merged to 2.6.24
 - <u>http://marc.info/?t=118767097300001&r=1&w=2</u>
- Reducing size of library
 - Merged to libselinux 2.0.35
 - <u>http://marc.info/?l=selinux&m=118064545200576&w=2</u>
- SELinux'ed BusyBox
 - Many applets merged
 - Assigning domain to applets
 - http://www.busybox.net/lists/busybox/2007-August/028481.html
- Improving latency in permission check
 - Merged to 2.6.24
 - <u>http://marc.info/?t=119078657600002&r=1&w=2</u>
- Audit for SH
 - Merged to 2.6.25
 - http://lkml.org/lkml/2007/11/7/3

Linux is a registered trademark of Linus Torvalds in the U.S. and other countries..

All other trademarks or registered trademarks are the property of their respective owners.

Copyright © 2008 Hitachi Software Engineering Co., Ltd.