

Recent security features and issues in embedded systems

NEC OSS Promotion Center

KaiGai Kohei <kaigai@ak.jp.nec.com>

U can change.

Security Overview

- Asset and Vulnerability should be considered as a pair.
- Threat intend to attack vulnerabilities.
- Risk means possibilities the threat to be actualized.
 - more worthwhile asset, weaker vulnerability has its risk grow.
 - risk depends on environmental factors, organization policy.
- Security is a way to reduce risk.

Evolutions of Cellular-Phone in the last 20 years

Evolutions of Video/Television in the last 20 years

Evolutions of OS security in the last 20 years

- What kind of security features are currently available within the operating system?
 - SELinux, Cryptograph, ACL, ...
- Can we apply them on embedded systems?
- Is it really comprehensive?

Today's Topics

- Sorting out security requirements
 - ISO15408 framework makes it clearly categorized.
 - Recent security futures can be mapped on the categories.
- Recent security feature and its issue
 - Introductions/Overviews of recent security features
 - Possible difficulty in applying security features to embedded systems
 - Why? differences in CPU, Filesystem, Memory size, ...
- This session shows the issues to be resolved when we apply recent security features on embedded systems.

ISO/IEC15408

- The purpose of ISO/IEC15408
 - Common criteria to evaluate security functionalities of IT products, not only software
- Essentials
 - more than 20 years history since TCSEC, ITSEC
 - 11 functional categories, 8 assurance ones
 - Developers can select functional ones suitable for them.
 - We can use it as a comprehensive catalog of security functionalities.

Protection Profile

- What is Protection Profile?
 - A set of requirements for specific categories
 - OS, RDBME, Firewall, SmartCard, Digital-Copier, etc...
 - Example:
 - CAPP, LSPP, MLOSPP for OS, DBMSPP for RDBMS

Technology map of Recent Security Features

 Re-organized major categories of security functionalities required by protection profiles for operating system.

Security Audit

- What is the purpose?
 - To confirm what has happened later, when we get security incidents
 - Unified event logging for both operating system and applications
 - Well formalized audit logs, In-kernel event filter
 - To alert system administrators
- Related components
 - linux-audit

linux-audit features (1/2)

- Designed for ISO15408 requirements
 - System call audit
 - In-kernel event filters
 - Selective audit review
 - Event notification for administrators
- Utilities
 - auditd
 - auditctl
 - ausearch, aureport

linux-audit features (2/2)

```
[root@saba ~]# auditctl -a exit,always -S open ¥
-F path=/etc/shadow -F exit!=0
[root@saba ~]#
```

```
[kaigai@saba ~]$ less /etc/shadow
/etc/shadow: Permission denied
[kaigai@saba ~]$
```

linux-audit issues in embedded systems

- Architecture Limitation
 - It hooks the entry-point of system call
 - Implemented in assembler code
 - Unsupported architectures
 - Only x86, ppc, ppc64, s390, ia64, UML, sparc64 are supported now.
 - Super-H coming soon (2.6.25)
 - Where is ARM, MIPS?
- Storage size limitation
 - smaller storage than server/desktop

Cryptographic Support

- What is the purpose?
 - Crypto-key operations based on standard algorithms.
 - Encryption/Decryption based on standard algorithms.
- Related components
 - dm-crypt
 - eCryptFS
 - based on in-kernel crypt API

dm-crypt/eCryptFS features

- dm-crypt
 - One of the device-mapper modules
 - Works in Block Layer
 - Per-device encryption
- eCryptFS
 - One of the pseudo filesystem works as NFS doing
 - Per-file encryption
 - Metadata as containts of files
 - Encryption is done before compression in jffs2

dm-crypt/eCryptFS issues in embedded systems

- dm-crypt and MTD devices
 - I/O traffic on MTD devices don't go through block layer.
 - Cryptographic Support on JFFS2, LogFS and so on?
- Feasible ideas
 - Utilization of JFFS2 compress handlers
 - Pseudo cryptographer device on MTD

 LogFs, YAFFs,
 etc...

 Pseudo crypt MTD

 MTD Layer

Data Protection

- Essentials
 - Access Control
 - Data Flow Control
 - Data Integrity
- What is the purpose?
 - To protect data (including metadata) from leaking, manipulation and destruction.
- Related components
 - POSIX ACL
 - SELinux

POSIX ACL

- The limitation in traditional permission model
 - 'rwx' permission for owner, a group and others
- How POSIX ACL works
 - It stores ACL within xattrs, used in permission checks.

- Default ACL supports
- POSIX ACL Issues in embedded systems
 - XATTR supports in filesystems are needed.
 - Busybox supports are needed.

SELinux (1/3)

• What is the purpose of SELinux?

Mandatory Access Controls (MAC)

Data Flow Controls (DFC)

SELinux (2/3)

Features

- It associates a security attribute for each subject/object.
 - e.g) "root:object_r:var_log_t:Unclassified"
- SELinux hooks any system-call invocation to apply its decision based on its security policy.
- Why we need SELinux?
 - root can be a single-failure point
 - Fine-grained access control
 - A single unified security policy
 - Generally, fewer checks are better
 - If SELinux is disabled?
 - Massive checks in userspace
 - or, Quality degrading

SELinux (3/3)

- SELinux issues on embedded systems
 - Filesystem XATTR support
 - security context of files are stored within xattr field.
 - cramfs, LogFS, yaffs, etc...
 - Userland utilities support
 - Now busybox has 12 applets, 12 extensions for SELinux
 - load_policy, setenforce, restorecon, ...
 - '-Z' option support, preserving security context, ...
 - libselinux provides fundamental facilities to userland.
 - pam_selinux.so associate a user with its security context.
 - Security Policy
 - Different application, environment from server/desktop
 - Distributors should provide its suitable base security policy

Identification and Authentification

- What is the purpose?
 - To ensure a process works with correct identifier.
 - To associate a user with correct authorities.
 - These features are foundation for other security facilities to work correctly.
 - Security-Audit, Access Controls, ...
- Related components
 - POSIX Capabilities
 - PAM

POSIX Capabilities (1/4)

- The purpose of POSIX Capabilities
 - Least privileged set
- Features
 - It enables to associate a part of 'root privileges'
 - E.g) Using network port < 1024, Ignoring DAC permission</p>
 - Linux kernel has this feature from 2.4.x series, however, it has been hard to utilize.
- Recent updates
 - Filesystem POSIX Capability
 - Per-process Capability Bounding Set

POSIX Capabilities (2/4)

The calculation rule of capabilities on execve()

Pseudo File POSIX capability bits

```
    If euid = 0 -> F(*) is set to All-1 (0xfff...fff)
    If euid != 0 -> F(*) is set to All-0 (0x00...00)
```

- We had no way to represent F(*) bitmasks.
- Filesystem POSIX Capability stores F(*) information within xattr of executable files.
 - We can run privileged programs with more restricted power.
 - E.g) /bin/ping with only CAP_NET_RAW

POSIX Capabilities (3/4)

comes from filesystem XATTR

Example

- /bin/ping with CAP_NET_RAW on F(permitted), not SetUID'ed
 - P'(permitted) = CAP_NET_RAW & 0xfff...fff | 0 & 0
 - P'(effective) = (true) ? CAP_NET_RAW : 0

Features

- It stores F(*) bits within filesystem XATTR region
- It enables to replace SetUID programs.
- Available on 2.6.24 or later

POSIX Capabilities (4/4)

Features

- Capability bounding-set can mask root privileges
- F(permitted) is 0xfff...fff when euid = 0
- In 2.6.24 or former, cap_bset is system wide variable
 - In the next kernel, we can set per-process capability bounding set, as follows.

PAM

- PAM (Pluggable Authentication Module)
 - A framework of authentication modules
- PAM Issues in Embedded systems
 - Widely used to set up initial users security attribute
 - security context of SELinux
 - per-process capability bounding set
 - It means these 'secure initial state' depends on PAM
 - How tinylogin handle it?

Communication & Others

- What is the purpose?
 - To provide secret, trusted and separated communication channel
 - Resource utilization, trusted timestamp, ...
- Related components
 - SSH/SSL/PGP
 - IPsec
 - Sensitivity and Integrity on communication channels
 - Cgroups/-rt kernel
 - Resource availabilities are also required to security aspect
 - Give us issues in this region, if you have anything.

Summary (1/2)

Summary (2/2)

- These issues should be solved to provide 'secure' embedded systems.
- Filesystem XATTR support
 - Common requirement for selinux, ACL, capabilities
 - It is now available on most of regular filesystems, but ...
- Utilities support
 - busybox
 - Now, about 70% of SELinux utilities are merged into upstream
 - Features of ACLs and capabilities are also necessary
- Cryptograph support on MTD devices
- Linux-audit support for embedded architecture

Any Question?

U can change.

Thank you!

U can change.